The Crystal Structure of α-KTh₆F₂₅, a Polymorph of CsU₆F₂₅*

BY GEORGE BRUNTON

Reactor Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tenessee 37830, U.S.A.

(Received 15 March 1971)

Crystals of α -KTh₆F₂₅ are hexagonal-rhombohedral, $R\overline{3}m$, with hexagonal axes $a_0 = 8.313$ (2), $c_0 = 25.262$ (4) Å, Z = 3 and $\rho(\text{cal}) = 6.281$ g.cm⁻³. Structural units of α -KTh₆F₂₅ are identical to those of CsU₆F₂₅ and comprise two adjacent rings of Th⁴⁺-F polyhedra, 6 polyhedra per ring, with an alkali metal ion centered between the rings. The structural units are stacked *ABCABC* along c_0 in α -KTh₆F₂₅ and *ABAB* in CsU₆F₂₅. K-F distances are 3.19 (2) and 3.20 (3) Å. Th-F distances range from 2.308 (1) to 2.541 (9) Å.

Introduction

Compounds exist with the stoichiometry $MF.6AF_4$, where M = K, Rband Cs, and A = Th and U. Zachariasen (1948) published lattice parameters and the space group $(P6_3/mmc)$ for KTh_6F_{25} and KU_6F_{25} , although Asker, Segnit & Wylie (1952) in their work on molten salt system $KF-ThF_4$ and Thoma, Insley, Landau, Friedman & Grimes (1958) in their work on system $KF-UF_4$ did not find an equilibrium compound at $KF.6ThF_4$ or at $KF.6UF_4$. Equilibrium relationships of $MF.6AF_4$ compounds were first established by Thoma *et al.* (1958) in their investigation of the RbF-UF_4 system and later by Thoma & Carleton (1961) in their study of system CsF-ThF_4. Unpublished work by Thoma and co-workers has established the existence of the remaining complex fluorides (Table 1).

Table 1. Isomorphous MF.6AF ₄ compou	na	ts
---	----	----

P6 ₃ /mmc	R3m
CsU ₆ F ₂₅	α -KTh ₆ F ₂₅
CsTh ₆ F ₂₅	$RbTh_6F_{25}$
RbU ₆ F ₂₅	
KU ₆ F ₂₅	
KTh ₆ F ₂₅	

Brunton (1971) determined the structure of CsU_6F_{25} ($P6_3/mmc$), and Table 1 shows the compounds with this structure. The structure of α -KTh₆F₂₅ has one isomorph, RbTh₆F₂₅, for which an erroneous space group was given by Brunton, Insley, McVay & Thoma (1965). Although the phase equilibrium work is not complete for all $MF-AF_4$ salt systems, the list in Table 1 is probably exhaustive.

Experimental

The compound α -KTh₆F₂₅ was grown as primary phase crystals from a molten salt ingot of the composition KF-ThF₄ (20-80 mole%). A crystal ground to ellip-

soidal shape $(0.156 \times 0.156 \times 0.182 \text{ mm})$ was mounted on a computer-operated Picker four-circle goniostat, equipped with a scintillation counter detector. Conditions for reflections, hkl, -h+k+l=3n and the diffraction symmetry $\overline{3m}$, are consistent with space groups $R\overline{3m}$, R3m and R32. The solution of the structure was accomplished in R3m.

Independent reflections were measured by the θ -2 θ scan technique using unfiltered Ag $K\alpha$ radiation. Each reflection was step-scanned at intervals of 0.01° with a 2-sec count at each step for a total of 0.5° 2 θ . The background was counted for 60 sec on each side of the peak. Take-off angle was 1.5°, and the total range of 2 θ for reflections was 3–50°. A standard reflection (060) was measured every 20 reflections to monitor X-ray source variations. The range of net count for (060) was 21855 to 22954.

Lattice parameters were determined by a leastsquares adjustment of 12 Ag^{*}K β (0·49701 Å) reflections between 29 and 38° 2 θ . At 24°C, $a_o = 8.313$ (2) and $c_o = 25.262$ (4) Å, Z = 3 and $\varrho(cal) = 6.281$ g.cm⁻². Independent reflections were corrected for Lorentz and polarization effects and absorption ($\mu = 461.2$ cm⁻¹, correction range 0.0156–0.0322).

Starting parameters for Th and K were determined from sections of the three-dimensional Patterson function. When the relationship between the $P6_3/mmc$ and $R\overline{3}m$ structures became evident, atomic parameters for the F ions were estimated from the $P6_3/mmc$ (CsU₆F₂₅) structure (Table 2). The structure was refined by iterative least-squares adjustment using a modification of the Busing, Martin & Levy (1962) computer program. The quantity minimized by the least-squares program was $\sum w ||F_o^2| - |F_c^2||^2$ with weights, w, equal to the reciprocals of the variances, which were estimated from the empirical equation:

$$\sigma^2(F_o^2) = \{T + B + [0.05(T - B)]^2\} / \{A(Lp)^2\},\$$

where T = total counts, B = background, counts A = absorption correction, and Lp = Lorentz and polarization corrections (Brown & Levy, 1964). Scattering factors for the ions were taken from Cromer & Waber (1965), and the anomalous dispersion terms for Th and K for

^{*} Research sponsored by U. S. Atomic Energy Commission under contract with the Union Carbide Corporation.

Ag K α radiation were taken from Cromer (1965). Anisotropic temperature factors were calculated for Th⁴⁺ and K⁺, and the temperature factors for F⁻ were constrained to be isotropic. Final parameters were calculated using data greater than $\sigma^2(F_o^2)$. Discrepancy indices are:

	Tab	le 2. Atomic	parameters of α -	KTh ₆ F ₂₅ and Cs	$U_{6}F_{25}$	
α-KTh ₆ F ₂₅			CsU ₆ F ₂₅			
	x	У	z	x	У	Z
K–Cs	0	0	0	}	3	34
Th–U	0.50031 (7)	-x	0.09135 (3)	0.1737	2x	0.11146
F(1)	$\frac{1}{2}$	0	0	0.184	2x	4
F(2)	0.193 (2)	-x	-0.0630 (8)	0.485	2x	0.144
F(3)	0.323 (2)	0	1/2	0.678	0	0
F(4)	0	0	0.208 (2)	$\frac{1}{3}$	23	0.068
F(5)	0	0	0.449 (2)	0	0	0.076
F(6)	0.141 (2)	-x	-0.3963 (9)	0.121	2x	0.649
		α-Κ٦	Th ₆ F ₂₅ temperature	factors		
	β_{11}^{\dagger}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
K	0.001(2)	β_{11}	0.0001(2)	$\frac{1}{2}\beta_{11}$		0
Th	0.0020(2)	p ₁₁ Lastronia Pa	0.00008(1)	0.0011(1)	0.00002(1)	$-p_{13}$
F(1)	0.0053(3)	$\beta_{r} = a^{*2}\beta_{r}$	$lor r; p_{22} = p_{11}, lor r^2; p_{22} = b^{21}, lor r^{22}$	R. la*		
$\Gamma(2)$	0.0079(3)	$p_{33} = c \sim p_{11}$	$a^*, p_{12} = 0 \cos \gamma$	are the reciprocal l	attice narameter	e
F(4)	0.0023(2)	$p_{13} - p_{23} - 0$,o,c and y	ure the recipiocal i	attice parameter.	J•
F(5)	0.0025(3)					
F(6)	0.0092(3)					
- (-)						

† Coefficients in the temperature factor:

 $\exp\left[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)\right]$

Standard errors in parentheses, corresponding to the last significant digit, are given by the variance-covariance matrix.

Table 3. Interatomic	: distances (Å)	for α -KTH ₆ F ₂₅
----------------------	-----------------	--

6[KF(6)]	3.19 (2)	6[KF(2)]	3.20 (3)
Th - F(1)	2.308 (1)	2[Th—F(3)]	2.330 (4)
2[Th-F(2)]	2.34 (1)	2[Th—F(6)]	2.35 (1)
Th——-F(4)	2.481 (7)	Th——F(5)	2.541 (9)
4[F(1)-F(2)]	2.74 (2)	4[F(1)-F(6)]	2.75 (2)
F(2) - F(4)	2.56 (3)	2[F(2)-F(6)]	2.77 (2)
2[F(3)-F(3)]	2.69 (2)	[F(5)—F(6)]	2.43 (3)
F(5)F(5)	2.58 (6)		
	Comparable cation-anior	h distances (Å) for CsU_6F_{25}	
6[Cs-F(2)]	3.12 (2)	6[Cs—F(6)]	3·45 (4)
2[U - F(3)]	2.267 (8)	UF(1)	2.279 (2)
2[U - F(6)]	2.29 (5)	2[U—F(2)]	2.29 (2)
ÚF(4)	2.39 (4)*	UF(5)	2.54 (6)

*Accidentally omitted from Table 2 (Brunton, 1971).

Fig. 1. One double ring of Th-F polyhedra with a central K ion. Ring tilted 30° about Cartesian y axis.

$$R_{1} = \sum ||F_{o}^{2}| - F_{c}^{2}|| / \sum |F_{o}^{2}| = 0.0802 \text{ for reflections } > \sigma$$

= 0.0834 for all 736 reflections.
$$R_{2} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}| = 0.0616 \text{ for 641 reflections}$$

> σ
= 0.0782 for all reflections.

The standard deviations of an observation of unit weight $[\sum w(F_o - F_c)^2/(n_o - n_v)]^{1/2}$ is 1.6024 where n_o is the number of reflections, 641, and n_v is the number of variables. Atomic parameters and temperature factors are listed in Table 2. Interatomic distances are given

Table 4. Observed and calculated structure factors for α -KTh₆F₂₅

in Table 3. Observed and calculated structure factors are listed in Table 4. An extinction correction was applied to F_c by the method suggested by Zachariasen (1967, 1968); Zachariasen's $r^* = 0.00939$ (8).

Results

The basic structural unit of α -5Th₆F₂₅ is a double ring of Th-F polyhedra, six polyhedra per ring, surrounding the K ion (Fig. 1). Each Th-F polyhedron is a capped trigonal prism with an F ion at each of the nine corners. Rings are joined by opposing polyhedra, sharing corners, F(1), as with CsU₆F₂₅ (Brunton, 1971). The result is that each K is surrounded by 12F at distances of 3.19 (2) and 3.20 (3) Å. Within each ring the polyhedra link by sharing edges F(2)-F(4) and F(6)-F(5), alternately, and these are short F-F distances. Interatomic distances for both compounds are listed in Table 3 for comparison and to correct an omission in the original CsU₆F₂₅ table. Th-F distances, except for Th-F(5) [2.541 (9) Å] are 0.03 to 0.1 Å longer than corresponding U-F distances. Cs-F distances are slightly longer than corresponding K-F distances.

The difference in the structures of α -KTh₆F₂₅ and CsU₆F₂₅ results from a different stacking arrangement for the double ring in each compound. The stacking order for CsU₆F₂₅ along c_o is *ABAB* [$c_o = 16.78$ (2) Å] and the stacking order for α -KTh₆U₂₅ is *ABCABC* $c_o =$ 25.262 (2) $\simeq \frac{3}{2}$ (16.78) Å]. The stacking order should not be confused with hexagonal or cubic close-packing, because atoms within the structural units are not closepacked. Structures are illustrated in Fig. 2 & 3; the F polyhedra are omitted for clarity. Preliminary work by Thoma *et al.* (unpublished) indicates that the difference in the structures represents a polymorphic transition in the compound KTh₆F₂₅, and that the KTh₆F₂₅ reported by Zachariasen (1948) is the low temperature or β -KTh₆F₂₅ (CsU₆F₂₅ form).

References

- Asker, W. J., Segnit, E. R. & Wylie, A. W. (1952). J. Chem. Soc. p. 4470.
- BROWN, G. M. & LEVY, H. A. (1964). J. Phys. Radium, 25, 497.

Fig. 2. ABA stacking of CsU₆F₂₅. F ions are omitted. U ions are not labeled.

Fig. 3. ABC stacking of α -KTh₆F₂₅. F ions are omitted. Th ions are not labeled.

BRUNTON, G. (1971). Acta Cryst. B27, 245.

- BRUNTON, G. D., INSLEY, H., MCVAY, T. N. & THOMA, R. E. (1965). USAEC Report ORNL-3761, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). USAEC Report ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

CROMER, D. T. (1965). Acta Cryst. 18, 17.

CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104. THOMA, R. E. & CARLTON, T. S. (1961). J. Inorg. and Nucl. Chem. 17, 88.

THOMA, R. E., INSLEY, H., LANDAU, B. S., FRIEDMAN, H. A.

& GRIMES, W. R. (1958). J. Amer. Ceram. Soc. 41, 538.

ZACHARIASEN, W. H. (1948). J. Amer. Chem. Soc. 70, 2147.

- ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 558.
- ZACHARIASEN, W. H. (1968). Acta Cryst. A24, 212.

Acta Cryst. (1972). B28, 147

The Crystal Structure of the Molecular Complex between Antimony Trichloride and Phenanthrene

BY A. DEMALDÉ, A. MANGIA, M. NARDELLI, G. PELIZZI AND M. E. VIDONI TANI

Istituto di Chimica Generale ed Inorganica, Università degli Studi, Parma, Italy Centro di Studio per la Strutturistica Diffrattometrica del C.N.R.

(Received 21 December 1970)

2SbCl₃. phenanthrene gives triclinic (*P*T) crystals: a = 8.990(6), b = 11.10(1), c = 10.44(1) Å, $\alpha = 90.7(1)$, $\beta = 80.4(1)$, $\gamma = 69.1(1)^{\circ}$, Z = 2. The structure has been determined by three-dimensional Fourier methods and refined using block-diagonal least-squares down to R = 3.8 %. The structure consists of alternating double layers of SbCl₃ and phenanthrene molecules. The coordination around Sb corresponds to a distorted trigonal bipyramid. Two independent Sb atoms are on opposite sides of the phenanthrene plane and their distances from that plane are not equal (3.27, 2.94 Å). The interactions between the metal atom and the aromatic molecule concern the π -electron system. Distorted octahedral coordination around the Sb atoms is completed by Sb...Cl contacts (3.260, 3.49, 3.41, 3.55 Å) significantly shorter than the sum of van der Waals radii.

Introduction

It is of interest to study the structure of the complexes formed by antimony trihalides with aromatic hydrocarbons, to determine the nature of the bonding interactions between the constituents and to obtain information on the mechanism of the catalytic effect which the antimony trihalides exert in Friedel–Crafts type reactions. The structure study of 2SbCl₃.phenanthrene has been carried out to make a contribution to understanding the nature of the interactions between the inorganic and aromatic constituents, which could be related to the donor properties of the π system of phenanthrene and to the acceptor properties of SbCl₃. From the study of the pure quadrupole resonance spectrum of 2SbCl₃.benzene, Okuda, Nakao, Shiroyama & Negita (1968) suggested that in this compound there is a charge transfer from the π system of benzene to a chlorine atom of SbCl₃, but a subsequent X-ray analysis carried out by Hulme & Szymanski (1969) showed that